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Abstract

Most of today’s computational fluid dynamics (CFD) calculations for gas–solid flows are carried out assuming that the solid phase is

monodispersed, whereas it is well known that in many applications, it is characterized by a particle size distribution (PSD). In order to

properly model the evolution of a polydisperse solid phase, the population balance equation (PBE) must be coupled to the continuity and

momentum balance equations. In this work, the recently formulated direct quadrature method of moments (DQMOM) is implemented in a

multi-fluid CFD code to simulate particle aggregation and breakage in a fluidized-bed (FB) reactor. DQMOM is implemented in the code by

representing each node of the quadrature approximation as a distinct solid phase. Since in the multi-fluid model, each solid phase has its own

momentum balance, the nodes of the DQMOM approximation are convected with their own velocities. This represents an important

improvement with respect to the quadrature method of moments (QMOM) where the moments are tracked using an average solid velocity.

Two different aggregation and breakage kernels are tested and the performance of the DQMOM approximation with different numbers of

nodes are compared. These results show that the approach is very effective in modeling solid segregation and elutriation and in tracking the

evolution of the PSD, even though it requires only a small number of scalars.

D 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Fluidized-bed (FB) reactors are widely used in many unit

operations in the chemical, petroleum, pharmaceutical, ag-

ricultural, food and biochemical industries. They are well

known as excellent reactors for their superior rates of heat

and mass transfer between the gas and the solid particles,

and for the efficient mixing of reacting species. With the

development of high-speed computers, computational fluid

dynamics (CFD) has played an important role in under-

standing the flow behavior of these two-phase flow systems.

As is well known, most of today’s CFD calculations for

gas–solid flows are based on the assumption of a mono-

dispersed solid phase (e.g., all particles have the same

characteristic size) or on the assumption of a constant
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particle size distribution (PSD) [1] (e.g, particles may be

represented by a few different size classes but no changes in

the PSD are accounted for). However, in many practical

cases, solid particles belong to a PSD, which changes

continuously according to the operating conditions. For

example, in FB poly-olefin reactors, small catalyst particles

(e.g., 20–80 Am) are introduced at a point above the gas

distributor, and when exposed to the gas flow containing the

monomer, polymerization occurs. At the early stage of

polymerization, the catalyst particles fragment into a large

number of small particles, which are quickly encapsulated

by the newly formed polymer and grow continuously,

reaching a typical size of 200–3000 Am. Due to the differ-

ences in the polymer particle sizes, segregation occurs and

fully grown polymer particles migrate to the bottom where

they are removed from the reactor. The smaller pre-poly-

merized particles and fresh catalyst particles tend to migrate

to the upper portions of the reactor and continue to react

with monomers [2,3]. In addition, under certain undesirable

operating conditions (e.g., when the reactor operates close to

the polymer softening temperature), polymer particles can
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become ‘‘sticky’’ and during collisions can form large

agglomerates that can possibly undergo sintering and cause

defluidization. In the opposite situation, if the bed is too

cold, the particles can become brittle and may fracture

forming small fragments that elutriate with the gas [3,4].

Successful CFD models for FB poly-olefin reactors must be

capable of describing such events in order to guide reactor

design, scale up and optimization.

Recent research efforts have been directed towards the

investigation of the effect of the PSD on the fluid dynamics

of FB reactors. However, most work has focused on the

segregation of binary mixtures. van Wachem et al. [5], using

kinetic theory applied to a bimodal particle mixture, pre-

dicted the expansion of the bed with respect to a monodis-

perse PSD. Howley and Glasser [6] examined a general

continuum model for a multi-particle fluidized bed and

provided a description of the observed phenomenon of

‘‘layer inversion’’ for a binary mixture. In the work of

Hoomans et al. [7], discrete particle simulations were used

to investigate segregation phenomena in binary and ternary

mixtures, good agreement is obtained in comparison to

experiments.

In order to rigorously account for particle-related phe-

nomena (e.g., agglomeration and breakage), the population

balance equation (PBE) must be solved along with the

continuity and momentum balance equations. However,

attempts to incorporate the PBE into multi-fluid codes and

to describe the evolution of the PSD in a FB reactor are very

few. Recently, researchers have tried to couple the PBE with

an Euler–Euler two-fluid model to simulate bubble-column

reactors [8]. In their work, the dispersed phase was repre-

sented by 10 different size groups but only the momentum

balance for the mixture was solved due to the significant

reduction in the computing time. Thus, the 10 different

classes were convected in the computational domain with

the same mean algebraic velocity. Results showed good

agreement with experiments for some hydrodynamic varia-

bles, but underestimated the global hold up [9]. Other

researchers have also tried to solve the PBE with the multi-

fluid code simultaneously, but most work was done in gas–

liquid systems, not in gas–solid systems [10–12].

For spatially homogeneous systems, many different

methods exist for solving the PBE and a lucid description

of the mathematical and numerical issues involved can be

found in Ref. [13]. The most direct method is the dis-

cretized population balance (DPB) approach or classes

method (CM), in which the internal coordinate (e.g.,

particle length or volume) is discretized into a finite series

of bins. In order to get reasonable results, a large number

of classes must be used (e.g., 20–30), so that the DPB

method is not a feasible approach for CFD calculations.

An alternative approach uses Monte-Carlo simulations.

This approach is based on the solution of the PBE in

terms of its stochastic equivalent. A population of particles

undergoes the ‘‘real’’ physical processes, and events occur

according to the appropriate probabilities. For more details
on this approach, see Refs. [14,15]. Although this ap-

proach is theoretically applicable, especially for Lagrang-

ian–Eulerian simulations, in order to reduce the statistical

error, a very large number of particles must be used. Due

to limitations on the computational resources, the full

incorporation of Monte-Carlo methods with CFD codes

is at the moment intractable [16,17].

An attractive alternative is represented by the method of

moments (MOM) where the PSD is tracked through its

moments by integrating out the internal coordinate. The main

advantage of MOM is that the number of scalars required is

very small (i.e., usually 4–6), which makes the implementa-

tion in CFD codes feasible. However, due to the difficulties

related with expressing transport equations in terms of the

moments themselves, the method has been scarcely applied.

This is the so-called closure problem, pointed out first by

Hulburt and Katz [18], and recently reviewed by Diemer and

Olson [19]. As an alternative, McGraw [20] developed the so-

called quadrature method of moments (QMOM), which is

based on the approximation of the unclosed terms by using an

ad-hoc quadrature formula. The quadrature approximation

(i.e., its abscissas and weights) can be determined from the

lower-order moments [21] by resorting to the product-differ-

ence (PD) algorithm [22]. QMOM has been extensively

validated for several problems with different internal coor-

dinates [23–25]. One of the main limitations of QMOM is

that since the solid phase is represented through the moments

of the distribution, the phase-average velocity of the different

solid phases must be used to solve the transport equations for

the moments. Thus, in order to use this method in the context

of the multiphase flows, it is necessary to extend QMOM to

handle cases where each particle size is convected by its own

velocity.

In order to address these issues, the direct quadrature

method of moments (DQMOM) has been formulated and

validated [26]. DQMOM is based on the direct solution of

the transport equations for weights and abscissas of the

quadrature approximation. The calculation of the quadrature

approximation through this direct formulation presents the

advantage of being directly applicable to multi-variate PBE

(i.e., PBE with more than one internal coordinate). More-

over, as it will become clear below, each node of the

quadrature approximation can be treated as a distinct solid

phase. DQMOM thus offers a powerful approach for de-

scribing polydisperse solids undergoing segregation,

growth, aggregation and breakage processes in the context

of CFD simulations.

In this work, DQMOM is implemented in a multi-fluid

model for simulating polydisperse gas–solid FB reactors.

First, the general governing equations for the multi-fluid

model are presented in Section 2. Next, in Section 3, the

implementation of aggregation and breakage in the

DQMOM multi-fluid model is described. Finally, CFD

predictions for the evolution of the PSD in a FB reactor

with aggregation and breakage are presented in Section 4.

Conclusions are drawn in Section 5.
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2. The DQMOM-multi-fluid model

The detailed mathematical modeling of FB reactors is

very complex since it involves interactions between closely

coupled phenomena, such as multiphase flow dynamics,

mass transfer, heat transfer, chemical reactions, and partic-

ulate processes such as aggregation and breakage. The

simultaneous numerical solution of the equations for conti-

nuity, momentum, energy, and chemical species is required.

In addition, for polydisperse solids, a PBE is needed. For

simplicity, in this work, the FB is assumed to be isothermal

with no chemical reactions, and the PSD changes only due

to aggregation and breakage. Thus, our goal is to build the

link between the PBE and the continuity and momentum

balance equations, and to obtain an economical but accurate

method for describing the time evolution of the PSD and the

gas and solids flows fields. In what follows, the multi-fluid

model for gas–solid FB reactors is first described briefly.

More details can be found elsewhere [27]. The implemen-

tation of DQMOM in the multi-fluid model is then de-

scribed in some detail.

2.1. Multi-fluid model for gas–solid flow

The multi-fluid model is an extension of the two fluid

model for gas–solid flows [27]. In this model, the gas and

solid phases are treated as inter-penetrating continua in an

Eulerian framework. The gas phase is considered as the

primary phase, whereas the solid phases are considered as

secondary or dispersed phases. Each solid phase is charac-

terized by a specific diameter, density and other properties.

The primary and dispersed phases are characterized by

volume fractions, and by definition, the volume fractions

of all phases must sum to unity:

eg þ
XN
a¼1

esa ¼ 1; ð1Þ

where eg is the gas volume fraction, esa is the volume

fraction of ath solid phase, and N is the total number of

solid phases.

The continuity equation for the gas phase is

Begqg

Bt
þj � ðegqgugÞ ¼ 0; ð2Þ

where qg is the density of the gas, and ug is the gas velocity.

In the absence of aggregation and breakage, the continuity

equation of the ath solid phase is

Besaqsa

Bt
þj � ðesaqsausaÞ ¼ 0; ð3Þ

where qsa is the density of the ath solid phase and usa is the

velocity of the ath solid phase. As will be shown below,

aggregation and breakage processes will result in additional

terms on the right-hand side of Eq. (3).
The momentum balance for the gas phase is

B

Bt
ðegqgugÞ þj � ðegqgugugÞ ¼ j � Sg þ

XN
a¼1

fga þ egqgg:

ð4Þ

Likewise, for the solid phases, the momentum balances

are

B

Bt
ðesaqsausaÞ þj � ðesaqsausausaÞ

¼ j � Ssa � fga þ
XN
l¼1

f la þ esaqsag; ð5Þ

where Sg and Ssa are the stress tensors for the gas and the

solid phases, respectively, and g is the gravity vector. The

interaction force between the gas phase and the ath solid

phase is denoted by fga, whereas the interaction force

between the ath solid phase and the lth solid phase is denoted
by fla.

A simple Newtonian closure is used for the gas-phase

stress tensor. Two entirely different methods are used to

calculate the solid stress tensor in different regimes. For the

plastic or slowly shearing regime, theories from the study of

soil mechanics are used. For the viscous or rapidly shearing

regime, kinetic theory is used [27–29]. The constitutive

relations for the gas and solids stress tensors are summarized

in Table 1. Studies on the dynamics of a single particle in a

fluid have shown that many forces contribute to the gas–

solid interactions [30], but in this work, only the drag force

and the buoyancy force are accounted for. The drag corre-

lation used was derived by Gidaspow [28]. The interaction

forces between the different solid phases are expressed in

terms of the drag force and the enduring contact force in the

plastic regime, as described by Syamlal [27]. The gas–solid

and solid–solid interaction forces are listed in Table 2. A

detailed discussion of the parameters in the multi-fluid

model can be found elsewhere [27]. The reader should keep

in mind that the solid stress tensor and drag formulation

appearing in Tables 1 and 2 are slight modifications of the

corresponding monodisperse solids models. Thus, the sim-

ulation results found using other polydisperse models (e.g.,

Refs. [1,31]) may differ quantitatively from those reported

here.

2.2. Direct quadrature method of moments

A polydisperse solid phase can be modeled by a multi-

variate distribution function n(L, us) for the characteristic

particle size L and the particle velocity vector us whose

transport equation is [26]

BnðL; us; x; tÞ
Bt

þj � ½usnðL; us; x; tÞ� þjus � ½FnðL; us; x; tÞ�



Table 1

Constitutive relations for gas and solids stress tensors, and the solids

collision parameters [27]

Gas stress tensor

Sg =�PgI + sg
sg = 2eglgDg� 2/3eglgTr(Dg)I

Dg = 1/2[jug+(jug)
T]

Solids stress tensor (viscous regime)

Ssa
v =�Psa

v I + ssa
v

Psa
v =K1aesa

2 ha

ssa
v = 2lsa

v Dsa + ksa
v Tr(Dsa)I

ha¼
�K1aesaTrðDsaÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
1aTr

2ðDsaÞe2sa þ 4K4aesa½K2aTr2ðDsaÞ þ 2K3aTrðD2
saÞ�

q
2esaK4a

0
@

1
A

2

ksa
v =K2aesaha

1/2

lsa
v =K3aesaha

1/2

K1a = 2(1 + e)qsaga

K2a ¼ 4dpaqsað1þ eÞ esaga

3p1=2
� 2

3
K3a

K3a ¼ dpaqsa

2

p1=2

3ð3� eÞ ½1þ 0:4ð1þ eÞð3e� 1Þesaga� þ
8esagað1þ eÞ

5p1=2

	 


K4a ¼ 12ð1� e2Þqsaga

dpap1=2

ga ¼ 1

eg
þ 3dpa

2e2g

XN
c¼1

esc
dpc

Dsa= 1/2[jusa+(jusa)
T]

Solids collision parameters

gac ¼
1

eg
þ 3dpadpc

e2gðdpa þ dpcÞ
XN
k¼1

esk
dpk

rac=(da + dc)/2

hs ¼
esaqsaha þ escqschc

esaqsa þ escqsc
ðma þ mcÞ

ma= p/6dpa
3 qsa

To be consistent with the notation used in MFIX, the abscissa La and dpa are

equivalent, and represent the particle size for the ath solid phase.

Table 2

Gas–solid and solid– solid interaction forces [27]

Gas–solid interaction force

fga =� esajPg�Fga(usa� ug)

Fga ¼
150

e2salg

egd
2
pa

þ 1:75
esaqgAug � usaA

dpa
if egV0:8

3

4
CD

esaqgegAug � usaA
dpa

e�2:65
g if eg > 0:8

8>>><
>>>:

CD ¼
24

Repa
ð1þ 0:15Re0:687pa Þ if RepaV1000

0:44 if Repa > 1000

8><
>:

Repa ¼
egqgAug � usaAdpa

lg

Solid–solid interaction force

fla =� ( Fla +FV)(usa� usl)

Fla ¼
3ð1þ elaÞ p

2
þ Cflap2

8

� �
eslqslesaqsaðdpl þ dpaÞ2gaAusl � usaA

2pðqsld
3
pl þ qsad

3
paÞ

FV ¼
2:0� 108ðeg � eg*Þ3 if egVeg*

0 if eg > eg*

8<
:
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where x is the spatial coordinate, and t is time. In this

expression, S(L, us; x, t) is a ‘‘source’’ term that represents

discontinuous jumps in property space (i.e., due to aggre-

gation and breakage events), whereas F is the force acting

to accelerate the particles. Note that when Eq. (6) is used

to evaluate the size-conditioned average velocity of a

particle usa= hus | L= Lai, the size-conditioned average

force hF | L= Lai must be consistent with the terms on

the right-hand side of Eq. (5). In this work, we will

circumvent the difficulty of finding a consistent definition

for F by simply using Eq. (5) to define usa.

Using DQMOM, the distribution function n(L, us) is

approximated by a summation of N Dirac delta functions:

nðL; us; x; tÞ ¼
XN
a¼1

xaðx; tÞd½L� Laðx; tÞ�d½us � usaðx; tÞ�;

ð7Þ
where xa is the weight of the delta function centered at the

characteristic particle size La and the characteristic velocity

usa. If Eq. (7) is inserted into Eq. (6), and a moment

transformation is applied, it is possible to derive the transport

equations for the N weights xa (zero-order moment) and the

N abscissas La (first-order moment with respect to length). As

noted above, the conditional first-order moment of us can be

used to derive the momentum balances for the N velocities

usa. However, since we will assume that Eq. (5) holds, the

transport equations for the N weights xa and N abscissas La

can be found from the DQMOM representation of the PSD:

nðL; x; tÞ ¼
Z þl

�l
nðL; us; x; tÞdus

¼
XN
a¼1

xaðx; tÞd½L� Laðx; tÞ�: ð8Þ

Integrating out the velocity in Eq. (6), we obtain the

solid-phase PBE:

BnðL; x; tÞ
Bt

þj � ½husALinðL; x; tÞ� ¼ SðL; x; tÞ; ð9Þ

where hus | Li is the mean velocity conditioned on L:

husALinðL; x; tÞ ¼
Z þl

�l
usnðL; us; x; tÞdus; ð10Þ

and S(L; x, t) is the size-dependent source term for

aggregation and breakage. Notice that, by definition,

hus | L= Lai= usa.
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Before explaining how to obtain transport equations for

the weights xa and abscissas La, it is important to highlight

that previous validation studies of DQMOM and compari-

son of its performance with QMOM have demonstrated that

by using as few as N = 2 or 3 nodes, the lower-order

moments of the PSD:

mkðx; tÞ ¼
Z l

0

nðL; x; tÞLkdLc
XN
a¼1

xaðx; tÞLkaðx; tÞ; ð11Þ

are tracked with surprisingly small errors [24–26]. The

DQMOM approach has been tested for predicting the time

evolution of the PSD under aggregation, breakage and

molecular growth [26]. The ability of the model to track

the moments of the PSD does not give any physical

meaning to the nodes of the quadrature approximation

and, as explained in the original formulation of the model

[20], the weights xa and abscissas La are simply the

quadrature approximation for the moments. However, it

has been shown that the nodes can be thought of as different

solid phases with characteristic particle size La and velocity

usa, and that the quadrature approximation actually resem-

bles the shape of the underlying PSD [26]. It is thus clear

that each node of the quadrature approximation is calculated

in order to guarantee that the moments of the PSD are

tracked with high accuracy but, at the same time, each node

is treated as a distinct solid phase giving the DQMOM-

multi-fluid model the ability to treat polydisperse solids.

The rigorous derivation of the transport equations for the

weights xa and weighted abscissas La(La = Laxa) is

reported in Ref. [26]. Here we limit our discussion to a

brief review of the mathematical approach. The transport

equations for the weights and weighted abscissas can be

written as:

Bxa

Bt
þj � ðusaxaÞ ¼ aa;

BLa

Bt
þj � ðusaLaÞ ¼ ba; ð12Þ

where aa and ba are defined through a linear system found

from the first 2N moments (e.g., k = 0,. . ., 2N� 1) of the

PSD. This linear system can be written in matrix form as:

Aa ¼ d; ð13Þ

where the 2N� 2N coeficient matrix A ¼ ½A 1A2� is defined
by

A1 ¼

1 . . . 1

0 . . . 0

�L21 . . . �L2N

] O ]

2ð1� NÞL2N�1
1 . . . 2ð1� NÞL2N�1

N

2
666666664

3
777777775

ð14Þ
and

A2 ¼

0 . . . 0

1 . . . 1

2L1 . . . 2LN

] O ]

ð2N � 1ÞL2N�2
1 . . . ð2N � 1ÞL2N�2

N

2
6666666664

3
7777777775

ð15Þ

The 2N vector of unknowns A is defined by

a ¼ ½a1: : :aNb1: : :bN �T ¼
a

b

2
4
3
5; ð16Þ

and the known right-hand side is

d ¼ ½S̄ðNÞ
0

: : :S̄
ðNÞ
2N�1�

T� ð17Þ

The source term for the kth moment S̄k
(N) is defined by

S̄
ðNÞ
k ðx; tÞ ¼

Z l

0

LkSðL; x; tÞdL: ð18Þ

As shown below, with the DQMOM approximation, the

right-hand side of Eq. (18) is closed in terms of the N

weights and abscissas. The superscript (N) on S̄k
(N) is a

reminder that N nodes are used to approximate the integral.

As N increases, the quadrature approximation will approach

the exact value, albeit at a higher computational cost.

If the abscissas La are unique, then A will be full rank.

For this case, the source terms for the transport equations of

the weights xa and weighted lengths La can be found

simply by inverting A in Eq. (13):

a ¼ A�1d: ð19Þ

If at any point in the computational domain two abscissas

are equal, then the matrix A is not full rank (or the matrix is

singular), and therefore, it is impossible to invert it. In order

to overcome this problem, a small perturbation can be added

to the abscissas to make A full rank. However, this method

does not work very well as the number of nodes increases,

and alternative approaches can be used.

First of all, it is important to develop a reliable technique to

detect any singularity of the matrix A. The matrix can be

singular (or nearly singular) when two abscissas become too

close to each other with an increase in the number of nodes. In

such situations, the inverse of the matrix can still be calcu-

lated, but it has a large error. Thus, a safe way to detect a

singularity is to calculate the condition number of the matrix

A when N>3. Here, the condition number is defined as the

ratio between the largest and smallest singular values. The

reciprocal of the condition number can be used as a control

variable to monitor singularity of the matrix A. If it is smaller

than a small number (e.g., 1.0� 10� 12), the matrix is

considered singular.
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When a singularity is detected, two possible approaches

can be used to overcome the problem. In the first one, for

the computational cells where singularity happens, the

matrix A is not inverted and the source vector A is simply

set to zero. In this case, convection in physical space will

‘‘solve’’ the singularity. If the second approach is used, the

source vector A is estimated from the average of the source

vectors from neighboring cells. However, it is important to

highlight that the frequency of this event is very low in the

simulations. This result is also confirmed by the fact that the

abscissas La are equal to each other only if the final PSD is a

monodispersed distribution centered at a unique value,

which is not the case in most practical applications. It is

also clear that this singularity problem of the matrix A is

more related to boundary or initial conditions where mono-

dispersed distributions might be used.

In order to be consistent with the variables used in the

multi-fluid model, we need to relate the weights and

abscissas to the solid volume fraction esa and the effective

length esaLa for each solid phase. The volume fraction of

each solid phase is related to the abscissas La and weights

xa by

esa ¼ kvL
3
axa ¼ kv

L3
a

x2
a
; ð20Þ

and the effective length of the solid phase is

esaLa ¼ kvL
4
axa ¼ kv

L4
a

x3
a
; ð21Þ

where kv is a volumetric shape factor (e.g., for spherical

particles kv = p/6). Using Eqs. (20) and (21), the transport

equations for esa and La can be written as

Besaqsa

Bt
þj � ðusaesaqsaÞ ¼ 3kvqsaL

2
aba � 2kvqsaL

3
aaa;

BesaLaqsa

Bt
þj � ðusaesaLaqsaÞ ¼ 4kvqsaL

3
aba � 3kvqsaL

4
aaa:

ð22Þ

The first equation represents the continuity equation

for the ath solid phase in the presence of aggregation and

breakage (cf. Eq. (3)). It is clear that because of

aggregation and breakage, the volume fraction of each

solid phase will change according to its characteristic

length La is order to mimic the evolution of the PSD. It

is straightforward to verify that the summation of the

transport equations over the N solid phases leads to a

null source term. This implies that aggregation and

breakage do not change the total solid volume fraction

(i.e., the solid volume fraction is preserved). Thus, the

source term for the gas volume fraction eg is null, and

the relative volume fractions of the different solid phases

change due to aggregation and breakage. The second

equation in Eq. (22) is solved in the multi-fluid model

as a set of user-defined scalars. Finally, note that using

Eq. (20), the weights xa can be computed from esa and
La whenever they are needed (e.g., to compute d) during

the course of a simulation. Eqs. (5) and (22) constitute

the DQMOM-multi-fluid model for a polydisperse solid

phase. The only remaining task is to relate d in Eq. (13)

to the well-known expressions for aggregation and break-

age from the theory of population balances [13].
3. Implementation of aggregation and breakage

In this work, we will consider changes in the PSD due

only to aggregation and breakage. For this case, the moment

transform of the aggregation and breakage source term is

[24]

S̄
ðNÞ
k ðx; tÞ ¼ B̄a

kðx; tÞ � D̄a
kðx; tÞ þ B̄b

kðx; tÞ � D̄b
kðx; tÞ; ð23Þ

where the moments of the birth and death rates are defined

by

B̄a
kðx; tÞ¼

1

2

Z l

0

Z l

0

bðL; kÞðL3þk3Þk=3nðk; x; tÞnðk; x; tÞdkdL;

ð24Þ

D̄a
kðx; tÞ ¼

Z l

0

Z l

0

LkbðL; kÞnðk; x; tÞnðL; x; tÞdkdL ð25Þ

B̄b
kðx; tÞ ¼

Z l

0

Z l

0

LkaðkÞbðLAkÞnðk; x; tÞdkdL ð26Þ

D̄b
kðx; tÞ ¼

Z l

0

LkaðLÞnðL; x; tÞdL: ð27Þ

In these expressions, b(L, k) is the aggregation kernel,

which is proportional to the frequency of collision of two

particles with lengths L and k, a(L) is the breakage kernel,

which is the frequency of disruption of a particle of length

L, and b(L | k) is the fragment distribution function, which

contains information on the fragments produced by a

breakage event.

DQMOM is based on the quadrature approximation

reported in Eq. (8). Thus, using this approximation, the

source term in Eq. (23) is closed:

S̄
ðNÞ
k ðx; tÞ ¼ 1

2

XN
a¼1

XN
c¼1

wawcðL3a þ L3cÞ
k=3bac

�
XN
a¼1

XN
c¼1

wawcL
k
abac þ

XN
a¼1

waaa*b̄
ðkÞ
a

�
XN
a¼1

waL
k
aaa*; ð28Þ

where bac= b(La, Lc), aa* = a(La), and

b̄ðkÞa ¼
Z þl

0

LkbðLALaÞdL: ð29Þ



Table 3

The computational domain and solids physical properties in the simulation

Computational domain

Width (cm) 10.1

Height (cm) 50.0

Number of grid cells 15� 50

Cell width, Dx (cm) 0.67

Cell height, Dy (cm) 1.0

Particle physical properties

Particle density, qs (kg/m
3) 2530

Coefficient of restitution, e 0.8

Packed bed void fraction, eg* 0.38
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As concerns the daughter distribution function, the fol-

lowing expression has been used [24]:

b̄ðkÞa ¼ Lka
mk=3 þ nk=3

ðmþ nÞk=3
: ð30Þ

where m and n represent the mass ratios between the two

fragments. For example, if m = 1 and n = 1, the two frag-

ments have the same volume and thus, symmetric fragmen-

tation is considered. If m p n, then fragmentation is not

symmetric and a particular case is when mHn (or nHm)

which is known as erosion. In this work, two different

values of m and n have been considered. Most of the

simulations were run with m = n = 1, but in Section 4.4,

erosion is also investigated and compared with symmetric

fragmentation.

The kinetic theory of granular flow can be applied to

derive expressions for aggregation and breakage kernels in

fluidized beds. According to this theory, the number of

collisions per unit volume and time between particles with

indices a and c is given by [32]

Nac ¼ pxaxcr
3
acgac

4

rac

hs
p

ma þ mc

2mamc

� �1=2

� 2

3
ðj � usÞ

" #
;

ð31Þ

where ma and mc are the masses of the particles of size La

and Lc, respectively, rac and hs are the average particle size
and average granular temperature of the solid mixture,

respectively, and gac is the radial distribution for the mixture

(see Table 1 for the definitions of these parameters). Thus,

the aggregation kernel can be expressed as

bac ¼ Wapr3
acgac

4

rac

hs
p

ma þ mc

2mamc

� �1=2

� 2

3
ðj � usÞ

" #
;

ð32Þ

where Wa is the success-factor for aggregation, which is

usually a function of particle temperature, particle velocity

and particle position. Likewise, the breakage kernel can be

expressed as

aa* ¼ Wb

XN
c¼1

Nac

xa
ð33Þ

where Wb is the success-factor for breakage. In this work,

we will simply assume that Wa and Wb are constant.

If we neglect the divergence of the particle velocity field

and assume that particles have equal density, Eq. (32) can be

rewritten as

bac ¼ Wagac
3hs
qs

� �1=2

ðLa þ LcÞ2
1

L3a
þ 1

L3c

 !1=2

: ð34Þ
Likewise, Eq. (33) can be rewritten as

aa* ¼ Wb

XN
c¼1

xcgac
3hs
qs

� �1=2

ðLa þ LcÞ2
1

L3a
þ 1

L3c

 !1=2

:

ð35Þ

These are the kinetic-theory kernels used in the simu-

lations reported in Section 4.
4. Results and discussion

The mathematical model described above is incorporated

in the multi-fluid CFD code MFIX, which is a general-

purpose hydrodynamic model for describing dense or dilute

gas–solids flows. The semi-implicit method for pressure

linked equations (SIMPLE) scheme and automatic time-step

adjustment are used to speed up the calculation. A second-

order spatial discretization method is adopted to increase the

accuracy of the code. Due to the strong coupling between

the phases through the drag forces, the partial elimination

algorithm of Spalding (PEAS) is used to handle the inter-

phase coupling [33]. All of the simulations reported here

were run on an Alpha Cluster made up of Compaq XP1000

workstations. The average time step Dt for the simulation

was approximately 3� 10� 4 s.

Two-dimensional simulations were carried out for an FB

reactor. The computational domain and solid physical prop-

erties are reported in Table 3. The initial static bed height

was 15.9 cm. The gas velocity was 20 cm/s, and the density

and viscosity of air at room temperature were used in the

simulation. First, the code was tested with constant aggre-

gation and breakage kernels and then by using the expres-

sions derived from kinetic theory (Eqs. (34) and (35)). The

effect of the number of nodes N has been tested and

predictions with N = 2, 3 and 4 have been compared. The

comparison was made with the same initial PSD, and thus,

the initial conditions have been calculated by using the same

set of moments mk (see Table 4) for all values of N. In order

to initialize the fields, starting from the first 2N moments mk

(k = 0,. . ., 2N� 1) the N weights wa and the N abscissas La



0 5 10 15
Time (s)

100

150

200

250

300

350

400

450

d 32
(µ

m
)

Case  2

Case 1

Case  3

Fig. 1. Volume-average mean particle size (d32) for N = 2 (filled symbols),
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Table 4

Initial values of particle diameters (dpa) and solid-phase volume fractions

(esa) for N= 2, 3 and 4 for the same initial PSD (m0 = 32,050.825 cm� 3,

m1 = 670.285 cm� 2, m2 = 15.245 cm� 1, m3 = 0.385, m4 = 1.09� 10� 2 cm,

m5 = 3.43� 10� 4 cm2, m6 = 1.18� 10� 5 cm3, m7 = 4.28� 10� 7 cm4)

N a= 1 a= 2 a= 3 a= 4

Particle diameter, 2 183 356

dpa (Am) 3 174 263 409

4 171 225 316 420

Phase volume 2 0.274 0.356

fraction, esa 3 0.196 0.229 0.205

4 0.157 0.157 0.157 0.157

0 200 400 600 800 1000
Lα (µm)

0

0.1

0.2

0.3

0.4

εsα

0

0.1

0.2

0.3

0.4

εsα

0 200 400 600 800 1000
Lα (µm)

0 s 5 s

10 s 15 s

Fig. 2. PSD at the middle of the FB at 0, 5, 10 and 15 s for Case 2.
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were calculated by using the PD algorithm [22,26] and

assumed to be homogeneously distributed in the initial static

bed.

4.1. Constant kernels

In the first set of simulations, constant aggregation and

breakage kernels were used. Thus, the aggregation kernel

bac and the breakage kernel aa were assumed to be inde-

pendent of the particle diameter, velocity and other proper-

ties. The values of model parameters used in the simulations

are listed in the Table 4. Three cases have been investigated

and compared. In Case 1, the aggregation and breakage

kernels are both set equal to zero. In Case 2, the aggregation

kernel was set equal to 1�10� 5 m3/s, and the breakage

kernel to 0.1 s� 1. In Case 3, the aggregation kernel was set

equal to 1�10� 5 m3/s, and the breakage kernel to 1 s� 1.

For future reference, note that Case 2 will be dominated by

aggregation, while Case 3 will be dominated by breakage.

If no aggregation and breakage are present (Case 1), the

PSD does not change with time and the volume-average

mean particle size is constant. However, due to the differ-

ences in size between the N solid phases and therefore the

difference in the drag force, particle segregation by size will

occur. Indeed, smaller particles will tend to reside in the

upper part of the bed, whereas bigger particles will tend to

stay near the bottom. For Case 2, aggregation is dominant

and the particles become larger and larger, so the volume-

average mean particle size will increase with the time. For

Case 3, breakage is dominant and the particles become

smaller and smaller, and the volume-average mean particle

size decreases with the time. The volume-average mean

particle size in the fluidized bed for these three cases are

shown in Fig. 1 for N = 2, 3 and 4. Note that the volume-

average mean particle size reported here is d32, namely the

ratio between the third moment m3 and the second moment

m2 of the PSD. Note that the results are nearly independent

of N for constant aggregation and breakage. There are

significant fluctuations for Case 3, caused by the dilute

system resulting from high breakage.

As already mentioned, the DQMOM is based on a

presumed functional form of the PSD that allows us to

solve the closure problem and track with excellent accuracy
the moments of the distribution. Moreover, the different

delta functions are treated as distinct solid phases. Although

the underlying PSD could be retrieved by a sufficiently large

number of moments [19] in what follows we use a volume-

fraction versus particle-size diagram to report on the posi-

tion of the N delta functions. As explained in our previous

work [24], this can give some insight into the shape of the

underlying PSD, although the real and presumed PSDs

share only a fixed set of moments.

The PSD at the middle of the FB bed for Cases 2 and 3 at

selected times are shown in Figs. 2 and 3, respectively. At

time zero, there are four particles with different particle sizes

and the same solid void fraction for both cases. For the

aggregation dominated case (Fig. 2), smaller particles ag-

gregate and produce large particles, and the volume fraction

for smaller particles decreases with time. At 15 s, a broad
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distribution of particle sizes exists in the bed. For the

breakage-dominated case (Fig. 3), particles become smaller

due to breakage. Indeed, more and more smaller particles

are produced due to the excessive breakage. The bed

becomes more dilute with the newly formed smaller par-

ticles, and the PSD changes very quickly. Thus, the PSD at

different times are quite different.

As discussed in Section 1, DQMOM was developed from

QMOM. By using DQMOM, we do not need to solve the

transport equations for the moments. Nevertheless, infor-

mation about the moments is still valuable. Comparisons of

the volume-average normalized moments for Cases 2 and 3

are given in Figs. 4 and 5, respectively. The normalized

moments are calculated by dividing the volume-average

moments by their values at time t = 0:

lkðtÞ ¼
m̄kðtÞ
m̄kð0Þ

: ð36Þ

Some moments have particular physical meaning. For

example, m0 represents the total particle number density,

whereas m2 is related to the total particle area, and m3 is

related to the total particle volume. For Case 2, it is possible

to see that N = 2, 3 and 4 gives very similar predictions. In

Fig. 4, the expected effects of aggregation are observed: the

total particle number density (m0) decreases, as do m1 and

m2, whereas the total particle volume m3 remains constant.

For Case 2, strong segregation occurs in the bed while

particles are aggregating. Large particles migrate to the

bottom of the fluidized bed and small particles move to

the top. Aggregation continues after segregation and the big

particles in the bottom keep aggregating and getting larger

until large regions of the bed become defluidized. This

transition is shown in Figs. 6–8, where contour plots of the

mean particle size d32 at t = 5, 10 and 15 s, using N = 2, 3

and 4 are reported. From the plots, we can see that although

the mean particle size d32 over the whole domain is nearly
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Fig. 3. PSD at the middle of the FB at 0, 5, 10 and 15 s for Case 3.
the same for all N, the contour plots of d32 at different time

are slightly different. The contour plots for N = 3 and 4 are

more similar. Notice that because the kernels are constant

for this case, even after defluidization particles continue to

grow. This artifact can be eliminated by using the kinetic-

theory kernels as described below.

For Case 3, it is possible to see from Fig. 5 that the

evolution of the moments is opposite of Case 2 (i.e., m0, m1

and m2 increase). However, as before m3 remains constant,

since breakage is also a volume-preserving process. In this

case, some differences between N = 2, 3 and 4 are detected.

The different behavior can be attributed to elutriation of the

smallest particles. Because of the higher breakage rates,

some very small particles are produced and depending on

the gas velocity these particles can leave the bed from the
Fig. 5. Volume-average, normalized moments for Case 3 using N= 2 (filled

symbols), N= 3 (empty symbols), and N = 4 (lines).



Fig. 8. Time evolution of the spatial distribution of the mean particle size

(d32) for Case 2 using N= 4.
Fig. 6. Time evolution of the spatial distribution of the mean particle size

(d32) for Case 2 using N = 2.
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top. This strongly affects the total number of particles m0,

but the effect of this loss of particles is less important for m1,

m2 and almost negligible for m3. In fact, because the

particles leaving the domain are very small, they represent

a very small fraction of the volume of the bed and thus m3

does not change appreciably. For Case 3, no defluidization

is observed. In fact, due to the higher breakage rates, the

volume-average mean particle size d32 decreases, and par-

ticles are kept well mixed by the gas flow. Because of the
Fig. 7. Time evolution of the spatial distribution of the mean particle size

(d32) for Case 2 using N = 3.
reduction in the mean particle size, the bed expands and the

total particle number density locally decreases, reducing the

breakage rate.

Overall, from the constant-kernel cases, we can conclude

that our numerical implementation of the DQMOM-multi-

fluid model in MFIX works as expected. From a computa-

tional point of view, the additional CPU time needed to

include DQMOM is small relative to the total CPU time

needed to solve the multi-fluid model with the same value of

N but without aggregation and breakage. For example, using

four nodes, the additional time for calculating the source

term for DQMOM is only 18%. Regarding the dependence

of the results on the number of nodes used in the quadrature,

we find that for the constant-kernel cases, reasonably

accurate results can be obtained with only N = 2. This is

consistent with our earlier QMOM work [24] where it was

shown that even for complicated aggregation and breakage

kernels, the errors in the lower-order moments with NV 4

are uniformly small.

4.2. Kinetic-theory kernels

As noted above, constant aggregation and breakage

kernels cannot represent the FB reactor realistically. This

problem can be addressed by using the aggregation and

breakage kernels from kinetic theory reported in Eqs. (32)

and (33). Simulations have been carried out for N = 2, 3 and

4. The simulation conditions in Table 3 were again used for

the kinetic-theory kernels. Two different cases were inves-

tigated and compared. In Case 4, the aggregation success

factor Wa was 0.001 and the breakage success factor Wb was

0.0001. In Case 5, the success factors for aggregation and

breakage had the same value: 0.001.



Fig. 10. Volume-average mean particle size for Case 5.
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In Fig. 9, the volume-average mean particle size d32 is

reported for Case 4. As it is possible to see, d32 increases

with time. Several phenomena occur simultaneously.

First, particles begin to aggregate and, due to their

increased size, move to the bottom of the reactor.

Particles near the bottom of the reactor continue to

aggregate until defluidization occurs. At this point, the

granular temperature hs is null, and thus, the aggregation

and breakage kernels are null. No further particle aggre-

gation (nor breakage) can occur. Although the volume-

average mean particle size predicted by using two, three

and four nodes are very similar, some difference in the

defluidization dynamics can be observed. Generally

speaking, a higher number of nodes represents the system

more accurately, but increases the computational time.

For example, the CPU time required for running a

simulation with N = 4 is 1.8 times higher than with

N = 3, and 3.4 times higher than with N = 2.

Results for Case 5 are reported in Fig. 10. As it is

possible to see, also for this case, the volume-average

mean particle size predicted by the DQMOM using two,

three and four nodes is very similar. From Cases 4 and 5,

we note that the mean particle size distributions are

nearly the same when breakage dominates or when

mixing is significant. However, when segregation is

significant, using different values of N produces different

results. Nevertheless, as N increases, the results show

closer agreement. In consideration of the computation

cost, simulations with three nodes appears to be sufficient

to represent the PSD.

The instantaneous contour plots for the gas void frac-

tion at 6 s using N = 3 for Cases 4 and 5 are compared

with Case 1 (no aggregation and breakage) in Fig. 11. It

can be clearly seen that with aggregation, the fluidized bed

becomes defluidized and the bed height decreases com-

pared to no aggregation and breakage (Case 1). Due to the
Fig. 9. Volume-average mean particle size for Case 4.
high degree of aggregation, the particles become larger and

the fluidized bed becomes a packed bed. (The void

fraction is near to the maximum packed void fraction.)

Only a few bubbles are observed near the top of the bed.

For the case dominated by breakage, the particles become

smaller and remain well mixed. The bed height expands

compared to Case 1, and larger bubbles are observed in the

fluidized bed.

4.3. Effect of the aggregation success factor

The success factor for aggregation Wa is a very important

parameter that affects the PSD evolution and defluidization
Fig. 11. Contour plots of the gas volume fraction at 6 s. (a) Case 1. (b) Case

4. (c) Case 5.



Fig. 13. Effect of the value of the aggregation success factor (Wa) on the

volume-average mean particle size.
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dynamics. The role of this parameter has been investigated

for N = 3, and three different values of the success factor

Wa = 0.001, 0.0005 and 0.0001 were tested. In these simu-

lations, the success factor for breakage Wb was set to zero.

Results are first compared in terms of the pressure-drop

fluctuations in the gas–solid fluidized bed for different

values of Wa in Fig. 12. Notice that the pressure-drop

fluctuations go to zero when the bed becomes totally

defluidized. The time for defluidization using the success

factors reported above is 6, 11.5 and 50 s, respectively.

Results show that an increase in the success factor causes

earlier defluidization of the bed. Moreover, an increase in

Wa causes an increase in the final mean particle size, as

shown in Fig. 13.

4.4. Effect of the fragment distribution function

All the simulations above have been carried out using

symmetric fragmentation, but erosion can also be very

important in fluidized beds. Erosion is a fragmentation

process which results in the formation of a small and a

big fragment, and thus, it is the separation of a small ‘‘chip’’

from a larger particle. Indeed, different mass ratios can be

considered which still belong to the erosion-type fragmen-

tation mechanism. In what follows the results from Case 5

(where in Eq. (30), m = n = 1) are compared with results

obtained under the same operating conditions but with m = 9
Fig. 12. Pressure drop fluctuations in gas–solid fluidized bed for three

different values of the aggregation success factor. (a) Wa = 0.001. (b)

Wa = 0.0005. (c) Wa = 0.0001. Note that the pressure fluctuations cease

when the bed defluidizes.
and n = 1 (which implies the formation of a fragment whose

volume is nine times smaller than the volume of the other

fragment) using N = 3. Fig. 14 shows a comparison between

symmetric fragmentation and erosion for the volume-aver-

age mean particle size. Results show that erosion causes a

delay in the dynamic response of the mean particle size.

This is due to the fact that erosion is a less effective

breakage mechanism in the presence of aggregation. With

symmetric fragmentation, particles reduce their volume by a

factor of two, whereas with erosion a large particle generates

a small fragment and a second fragment which has nearly

the original volume.

It is interesting to note that with erosion, another phe-

nomenon can occur. The small fragments generated in the

erosion process become smaller at a faster rate than with
Fig. 14. Effect of symmetric fragmentation versus erosion on the volume-

average mean particle size.



Fig. 15. Comparison between symmetric fragmentation (solid lines) and

erosion (dashed lines). (a) Abscissas. (b) Solid volume fractions. (c)

Weights.
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symmetric fragmentation and in a finite time, an infinite

number of particles with null size can be generated. This

phenomenon goes under the name of shattering and can be

detected by a net loss of mass. In Fig. 15, the three volume-

average abscissas La, volume fractions esa and weights xa

are reported for symmetric fragmentation and erosion. As it

is possible to see, with erosion the smallest class L1 becomes

null in a finite time (about 12 s) and the corresponding

volume fraction es1 becomes zero. The corresponding

weight x1 should become infinite but since the equation is

not directly solved for xa, it tends to be zero instead.
5. Conclusions

Simulation results show that the DQMOM-multi-fluid

model is an effective approach to represent the evolution of

the PSD due to aggregation and breakage in FB reactors.

Two different sets of aggregation and breakage kernels were

tested. For FB reactors, the kernel developed from kinetic

theory should be more accurate then the constant kernel.

With the kinetic-theory kernel, the mean particle size stops

increasing when the fluidized bed becomes totally deflui-

dized. Nevertheless, both kernels can describe the phenom-

ena of particle growth, segregation, and elutriation due to

aggregation and breakage. The performance of the

DQMOM-multi-fluid model using two, three and four nodes
has been tested. Results show that model predictions are

very similar for N = 2–4. However, for some cases, using

three or four nodes produces similar results, which are

different from those found with two nodes. Considering

the increase in computational time with an increasing

number of nodes, three nodes appears to be a good choice

for representing FB reactors. The effect of the success factor

for aggregation Wa was investigated for the kinetic-theory

kernel. As expected, a high success factor Wa leads to a

shorter time for reaching complete defluidization.

For modeling real systems, several additions features

(e.g., heat and mass transfer, chemical reactions, etc.) must

be added to the CFD model proposed in this work. How-

ever, the conceptual framework of the DQMOM-multi-fluid

model need not be changed to accommodate these addition-

al features. In other work, we apply the CFD modeling

approach developed in this work to FB poly-olefin reactors

used to produce high-density polyethylene as well as other

polymers [34]. For these reactors, the formation of hot spots

can lead to aggregation of the polymer particles and

eventually to reactor shutdown. For this reason, the ability

to describe polydisperse, aggregating particles is a central

requirement of any CFD model for FB poly-olefin reactors.

The DQMOM-multi-fluid model developed here provides a

computationally efficient and robust method for attaining

this objective.
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